
MySMS:
Connecting Developing Regions Though SMS

Brad Campbell, Ruibo Li, Anthony Poon, and David St. Hilaire

Department of Computer Science and Engineering
University of Washington, Seattle, WA

{campbl, ruiboli, anthop, davidjsh}@cs.washington.edu

Abstract. The limited access to information in developing regions hinders the
growth and potential of developing regions. Limited infrastructure makes it
difficult to resolve the limited access to information. By utilizing existing cell
phone technology to bridge the gap between remote clients and database
servers, the information gap can be lessened. Voice transport is not simple
enough to be viable means of information exchange. However, another cell
phone technology, SMS, provides a medium that is both simple and flexible
enough to be viable. MySMS takes advantage of this medium by providing a
framework using SMS as a transport layer to allow SQL queries, notifications,
remote code execution and rapid application development.

Keywords: SMS, Android Platform, SQL

1 Introduction

The information age has brought a plethora of advances to the world which many
countries capitalize upon to increase the productivity and wealth of their citizens.
However, developing regions cannot easily take advantage of these technological
developments because of limited infrastructure, poor technology penetration and a
workforce with limited education. These limitations inhibit the rate at which
information may be gathered and processed, which in turn limits the capability for
developing regions to respond to new information.

However, there is an infrastructure in place which can be utilized to assist in the

gathering and processing of information. This infrastructure exists in the cellular
networks of developing regions. Although there is limited computer penetration and
restricted Internet connectivity; cell phone usage is on the rise, and cell phone
networks cover a far greater percentage of the populace in contrast to Internet access
[8]. If information can be easily gathered and shared using this existing cell phone
technology it would provide a significant boost to developing regions.

There are simple examples that demonstrate the strength of utilizing existing cell

phone networks. However, there are far greater applications for cell phones which
have not been explored. Reporting medical incidents is relatively basic and can

simply be done with SMS and no additional software. On the other hand, more
complicated applications such as crime reports, weather reports, rainfall prediction
require a more complicated support system of a server, a database, and the ability to
access both server and database. This cannot be done easily with SMS messages
because of the complexity of the server/database interaction.

The solution for this is to develop applications, which run on a client phone in

conjunction with a phone connected to a server. Unfortunate developing these
applications can be difficult due to varying cell phone support, complicated access to
servers via cell phones and a limited code base on which existing developers can base
their applications. MySMS addresses all of these complications by providing a
framework for developers.

MySMS’s interface layer provides both convenience and functionality to

developers allowing faster and simpler development. The interface provides
simplified access to a SQL database, a widely accepted database framework, and
support for multiple applications. By providing simplified access to an extensive
powerful database, developers will have the ability to transmit, share, and move
information at the fastest speeds available in the existing infrastructure.

2 Related Work

Utilizing the SMS capabilities of a cell phone is not an unexplored region of
development. There has been considerable work done in the past which has focused
on utilizing the SMS capabilities of a cell phone for various forms of information
access. However, none of the previous work done covers the scope or the level of
support for phones as MySMS.

FrontlineSMS provides an excellent example of a standalone tool designed to send

and receive large quantities of SMS messages [1]. Frontline requires only a computer
and an attached cell phone, and is particularly useful for applications such as surveys
and mass notifications. However, because Frontline is a standalone tool, the types of
applications which it can support are limited.

SMSLib, SMS Toolkit, and SMS Server Tools are three different projects which

allow a developer to create their own SMS-enabled applications. These services
allow a computer to control the sending and receiving of SMS messages through a
complaint phone or GSM modem connected to the computer. SMS Server Tools also
allows developers to specify code to execute when a text message is received [2].
SMS Toolkit also supports signaling code to execute on the receipt of messages,
though it only can be used with Windows Mobile phones [4]. On the other hand,
while SMSLib does not support signaling developer code when a message is received,
it does provides the additional benefit of tracking sent and received messages in a
database [7].

Warana Unwired, developed by Microsoft Research India, provides a great
example of how SMS-enabled applications can empower residents of developing
regions. Before the Warana Unwired project, farmers were required to visit a number
of special locations to use computers which allowed them to access information such
as crop output shipped to the cooperative, prices for fertilizer, or other account
information. The Warana Unwired project replaced this system with one based on
cell phones that provided farmers with the ability to access this information by
sending special codes via SMS messages. It was hoped that not only would this
provide farmers with better and more convenient access, but would also create a
system that was much lower cost and more maintainable than the cooperatives
previous wired infrastructure [9].

Fig. 1. A farmer is checking crop output, prices, and account information using the Warana
Unwired project. MySMS seeks to help develop more applications such as this one to empower
people around in the world in developing regions.
Source: Warana Unwired [12]

Another application, built by Tseng, et al., is designed to collect data through

SMS-enabled sensors. Information, such as humidity, wind speed, temperature, and
number of trapped pests, was collected by sensors in the field that would then send
this information back to a centralized server via SMS messages. Tseng, et al. finds
that SMS is a mature technology that can easily and reliably handle the needs of
automated data acquisition [10].

Other tools and frameworks, such as GSM-CONTROL and SMS Reception

Center, attempt to extend on the functionality of the basic libraries. GSM-CONTROL
is a tool which focuses on controlling external hardware and other automated
processes using SMS messages. It also allows access to a SQL database by allowing

users to set certain messages to be interpreted as queries, but requires requires a GSM
modem, rather than a regular cell phone, in order to receive SMS messages [7]. SMS
Reception Center is for-profit software designed to send and receive SMS messages
without human interaction by setting off certain actions based on when an SMS
Message arrives, much like the SMS Toolkit mentioned earlier. Some of these
actions can be SQL queries, while others can prompt the server to execute a specific
program or send a return message [9].

3 Approach

MySMS builds on the work done by SMS Toolkit, SMSLib, and other frameworks
by including additional functionality focused on allowing developers to quickly and
easily prototype connected, SMS-enabled applications. In order to do so, MySMS
adopts the client-server application model with emphasis on wide-ranging application
support and a large amount of provided code. The client and server application model
is a common and basic model for many applications. By adopting this model,
MySMS makes application development easy and natural. MySMS is explicitly
based around sending queries and returning tables of results from a SQL database,
and this allows for a simple interface while retaining a large degree of flexibility.

A MySMS client is any entity which can send SMS messages to the MySMS

server. Within this broad definition, MySMS supports two distinct types of clients. A
non-smart client is any phone which can send and receive SMS messages. These are
the phones which can interact with MySMS or any other SMS library by having the
user type in queries in plain text. This is the vast majority of phones, and this allows
MySMS to help solve the most immediate problems with realistic hardware
requirements.

In cases where a graphical interface provides a substantial value over a text

interface, MySMS also uniquely supports smart clients which can run the MySMS
client service. The client service on the smart client provides a service local to the
phone that allows applications running on the phone to communicate via SMS
messages without needing to interact with the messages directly. A MySMS smart
client also provides many additional features, such as message fragmentation,
reliability, and enhanced message encoding, that are not possible on a dumb client.
By providing these additional features as well as abstracting the SMS based
communication, the MySMS client service enables developers to easily write
connected and compelling graphical applications that are more user friendly than text-
based clients.

While MySMS supports high-powered clients, only minimal requirements are

necessary for MySMS servers. Any computer that can support a SQL database and
can connect a phone via USB or serial port can also run MySMS and serve MySMS-
based applications. No additional infrastructure, such as internet access, is necessary

for MySMS, and this makes deploying MySMS to developing regions a practical
solution.

The client and service model that MySMS implements provides a framework to

guide developers as well as code for many common features that applications need.
This approach is also evident on the reusable code base that MySMS provides. To
assist developers in easily writing their applications, MySMS provides many read-
made modules for common, application-specific functions, such as message encoding
and login. By providing capable default modules, MySMS allows the developer to
implement applications without a large amount of effort. Alternately, developers may
choose to write their own modules to fully customize MySMS to their own
application.

Fig. 2. The Server-Client model which MySMS utilizes. The client resides on the phone while
the server side resides on a computer with an SQL server attached. The communication
between client and server is done via SMS.

MySMS's approach focuses on providing a strong structural framework and a large
supporting code base to make SMS application development easy. To effectively
support many different applications, MySMS clients may utilize smart cellular phones
running graphical applications or non-smart client phones using plain text SMS.
MySMS's large code base can be reused for a variety of applications whether they be
targeted toward smart phones, non-smart phones, or both. Overall the uniqueness of
MySMS lies in the client-server application model, support for both text-based and
graphical applications, and the reusable code base for easy application development.

MySMS utilizes a server-client model for handling SMS transactions and SQL
queries. The engineering decision for this is based on the limited operating power of
cell phones and the necessity for a server. The server acts as a central access point
providing processing power, data access, and a point of control for reliability and

security. The existence of the server allows MySMS to take advantage of the
processing power and point of control for additional features which sets MySMS
apart from previous projects.

Another advantage of the server-client model deployed by MySMS is related to the
level of control the server has between the client and the SQL database. This allows
for message processing and simplification of the requests on the client side with
provided encoding and decoding modules. The purpose of this to allow support for
both smart phones which may have GUI based applications and non-smart phones
which may rely only on direct SMS text messages. By providing support for both
smart and non-smart phones the chance for greater usage and application is higher.

To improve the usability and benefit of MySMS, the framework provides a great deal
of usable code upon installation. This usable code is targeted specifically at
developers interested in developing SMS powered applications on cell phones.
Essential modules are encoding and decoding modules for the compressed transfer of
SQL tables across SMS. Decoding modules for SQL result tables for pulling specific
sets of information from a large query set.

All of this functionality is tied together with the server-client model. The server
portion handles all the aforementioned features to support smart and non-smart
phones and provide encode/decode modules for efficient data transfer and use. This
particular model provides a great deal of reuse as well since developers can substitute
any client or server module as long as the interaction is the same. That is to say, any
client that communicates via SMS or any server which processes SMS messages can
fit within this server-client system for basic functionality (e.g. SMS message
processing, SMS inbound/outbound communication, server side code execution).

4 Implementation

MySMS is implemented with two separate pieces which work together via SMS.
The SMS messages connect together the server side of MySMS and the client side.
The server side handles queries, data acquisition, decoding, encoding, subscriptions,
notifications, and database errors. The client side handles queries along with smart
phone applications such as encoding, decoding, and phone specific applications. The
interaction between the server side and client side can be simple or complicated
depending on the platform of the phone. The engineering decisions made to
implement certain features in a specific way will be explained as well.

The server portion of MySMS is implemented with a smart phone connected to a

computer running a SQL database. The smart phone and computer need to have
access to a reliable source of power because they are vulnerable to power outages
which could cause serious disruptions in service, lost requests, and other service
related implications.

The client portion of MySMS is designed to run on phones, which are smart with

advanced features, or phones with limited features. The only limitation the client
portion of MySMS may experience is delayed notifications in the case the phone
cannot be contacted when the server sends a response to a query. It is the hope of
MySMS that messages that cannot be delivered immediately will be queued at the
service provider level and re-sent when the phone becomes available.

Fig. 3. The overall format of make up of MySMS with the server portions residing on the left
side of the picture and the client portions residing on the right side. This is an expanded view of
overall architecture of MySMS.

4.1 Server Implementation

The primary responsibility of the server portion of MySMS is to handle queries.

The server utilizes the phone attached to a computer to receive queries, which are
looked up in the database stored on the computer before responding to the query. To
ensure that the transport level of MySMS is stable, a previous project known for good
support and reliable transmission was chosen as the foundation for the server
implementation of MySMS.

The implementation deployed uses a modified version of SMSLib’s SMSServer.

SMSLib’s application is applicable for GSM compatible phones, which means certain
smart phones are not supported by MySMS. However, the inbox/outbox system
described separates the hardware of the server from SMSLib, providing the developer
the ability to use any application, such as the MSRToolkit, to receive messages and
insert them into the inbox of the database. This functionality greatly improves the
overall usability of the MySMS tool and provides a great many more options, which

is useful in any development environment. The reason for using SMSLib as the
transmission engine for MySMS is because of the wide range of phones supported by
SMSLib, hopefully providing developers with a wide range of options when
deploying MySMS.

Fig. 4. This portion of the diagram shows the primary implementation with use of the message
database described. The question mark signifies the ability for any application to add
information to the message database, not only SMS Messages.

In order to properly use the SMSLib's transmission framework MySMS needed to

follow the inbox/outbox SQL Table format to recieve and send SMS messages. This
inbox/outbox is part of a SQL server hooked up to the receiving smart phone. Any
messages the smart phone receives are placed into the inbox of the database once the
header of the message or query matches. Any message or query that does not match
the header is not saved into the inbox of the database. All outbound messages are
placed in the outbox table, multiple SMS message are queued in the outbox and sent
individually over SMS via the smart phone connected to the server. The outbound
outbox on the server side is also transparent to the developer, thus the developer can
potentially use any framework to do SMS transport.

4.2 Server Side SMS Message Decoding

Many of the benefits which MySMS provides developers exists in the ability for
MySMS to sit between the inbound and outbound portions of the SMS transport,
giving developers the ability to process the SMS message, when otherwise it would
simply be treated as a raw SQL query or message. This is done by building on the

inbox/outbox system which SMSLib deploys for SMS transport. When a message
arrives in the inbox, MySMS is informed and pulls the message from the inbox. At
this point the developer has numerous options on what is done with the message itself.
If the message is an SQL query already properly formatted and ready to be queried to
the database, the developer can pass it on and query the database immediately. If the
message is in an encoded format which MySMS already provides a decoder for, the
developer can pass the message to the decoder and MySMS will provide the
developer an easy way to pull various parts of the message. Finally if the message is
an encoded format only specific to the developer's own functionality, a separate
encoder that the developer defined can be used to decode the message. For example
the code below is one of the basic decoders provided by MySMS, it converts a given
message which is a series of bytes into a string for easy processing.

public String decode(ByteBuffer buffer) throws

IOException, ClassNotFoundException {

 ByteArrayInputStream ba_in = new

ByteArrayInputStream(buffer.array());
 GZIPInputStream gz_in = new GZIPInputStream(ba_in);
 ObjectInputStream in = new ObjectInputStream(gz_in);
 String query = (String)in.readObject();
 in.close();
 return query;
}

In typical use case either the second or third option will be utlized because it is
rare that a user will SMS an exact SQL query to be processed. This is mostly because
it is inefficient because of all the unnecessary keywords ans spaces which SQL
queries have, also it makes the SMS message itself abstract and difficult to understand
for anyone but the developers themselves which would make it almostly completely
inaccessible to users without any prior knowledge in SQL. For time savings, typically
a developer would use the second option and utilize preexisting MySMS decoders for
their messages, however since there are only a limited few decoders it means that
more often than not if the developer has some special encoding they will have to write
their own decoder. This can take up precious time which would be otherwise be used
for adding features, the impact on development is covered in the evaluation portion of
the paper. As a result, MySMS could be greatly expanded to include more decoders
which developers could use, offering a greater variety would shorten development
time and make MySMS an even more appealing framework.

4.3 Additional Server Features

Since MySMS does both the decoding and encoding at the server level, it allows
the modules that run the server to do more than encode and decode SQL queries. This
benefit allows MySMS to enable additional features that would otherwise not be
available in the standard SQL command set such as subscriptions. The typical use
case for a subscription is when a user or developer wants to receive a certain set of

information at certain intervals. This can be accomplished by sending a special
keyword that the server module recognizes. In this case MySMS uses the keyword
“SUBSCRIBE”. When the server sees the SQL query the parser which comes after
the decoder will find this keyword and perform the appropriate action by making a
note in the database that a specific phone number requested a subscription.

Fig. 5. These are additional features supported in MySMS and are handled between dispatch
and send as shown in Fig. 4.

The mechanics of the subscription are simple because the underlying framework is

not dependant upon anything else. Which means an additional module, which sits
next to the server module and checks the subscriptions table for subscribers allows
this feature to be fully implemented. Now whenever the server module has time it will
scan through the subscription table and build the necessary outgoing packets and
place them in the inbox table mentioned earlier. From there the SMSLib sending
protocols will handle the details of sending the information to whoever requested it.

Another feature added to MySMS due to the ability of the server to parse and

process messages are developer-defined functions. These functions allow cell phones
that are incapable of performing complicated functions to send them as a request off
to the server to be performed there. This is done the same way subscriptions are
handled by decoding the message and looking for keywords. When a match is found
the message is passed to the appropriate module, in this case the execution module for
developer defined functions, where the functions are calculated and then placed back
into the inbox table. Once a message is in the inbox table, it will be automatically sent
to the requester without any more guidance from MySMS, simplifying the process a
great deal.

4.4 Server Side SQL Table Encoding

After the developer is ready to to make a query to the SQL database, typically
returns come back in an unwieldy format with multiple lines and column descriptions
and a great deal of unnecessary aesthetic elements.To improve the ability of
developers to obtain the information they need easily MySMS comes with decoders
and encoders for the result table which an SQL query returns. This allows developers
to grab only specific fields which they might be interested and ignore the others
which is a great time saving resource. Another option is to use the encoder provided
on the server side to send the entire table of applicable data and then utilize the
complementary decoder to rebuild the encoded result table into something usable.
This is particular useful because typically result tables can be considerable in size,
which would take up multiple SMS messages, however by using an inbuilt encoder
MySMS provides, many tables can be reduced down to only one SMS message.

Fig. 6. This is the format of the result table once it has been encoded. It is a drastic
improvement in readability, information compression, and ease of access to specific fields.

4.5 Client Implementation

The client level applications on the cell phone for MySMS varies dependant on,

phone models. Simpler phones that are only capable of sending and receiving SMS
messages will have limited interaction with the client side software that MySMS
provides. Typical usage will be to directly send an SMS message to the server’s
phone number and wait for a response. However, for more complicated phones such
as the Android platform, developed by Google, there is substantial software to link
together MySMS with Android applications to ease the development process.

In order to demonstrate the usefulness of MySMS client level to developer

applications, the Android Platform served as a test bed. MySMS includes a set of
services and protocols to assist developers in interaction with MySMS from the point
an SMS message is received by the phone to the moment is transmitted. The entire
process is based on a service that resides on the Android phone called
MySMS_ClientService. The ClientService offers extensive abilities, these abilities
manages the transit of SMS Messages on an Android Platform capable phone.

MySMS makes use of many special features of the Android Platform provides.

One of these special features allows SMS messages to be intercepted and processed
by an application so the user never sees the message inbox of the phone. This is

particularly useful when an application is written that needs to abstract the database
interactions away from the user so that the application seemingly runs smoothly
without the user ever knowing that there is constant communication between the
phone and the server.

There are limitations to this ability because the Android Platform cannot properly

differentiate which message is intended for what application. The result is, if there are
additional SMS programs running which also intercept the SMS message it may result
in the deletion of a message intended for MySMS. This problem cannot be resolved
but can be mitigated by clearly informing the user of the necessary actions needed to
be taken for ensure smooth operation.

Under typical conditions any SMS communication related to MySMS will follow a

specific protocol. Once the message is received on the Android Platform the
MySMS_ClientService will catch the message thus hiding it from the user’s inbox.
From there the message is processed and sent through a decoding system. At the end
of the decoding and processing MySMS_ClientService will have a ResultTable which
is absolutely identical to the one the server portion of MySMS sent.

At this point a handshake is initiated between the developer application and

MySMS_ClientService. Since the MySMS service runs consistently on the Android
Platform when it is registered any developer application will be able to link and
connect to it. From there the developer application will provide a reference to itself to
the MySMS service. The purpose of this reference is so that the MySMS service can
inform the developer application when the ResultTable has arrived and it is waiting to
be picked up by the developer application.

This is done with two separate functions. One function exists inside the MySMS

service and another function will exist inside the developer’s application. Upon the
startup of the developer’s application it will call the function inside the MySMS
service to inform the service of the existence of a new developer application. The
service will make note of this and remember to keep track of any messages directed
toward this developer application. In turn, after the service has found a message
directed at the developer application, the service will call the function inside the
developer’s application alerting the application to the awaiting ResultTable. Along
with informing the application, an attached MessageID will accompany the call so
that when the developer application calls the service to ask for the ResultTable the
appropriate message is returned. This process streamlines the communication
between the developer application and the MySMS service.

In the case where the developer application wishes to make a query the primary

method is to make a request through the MySMS service. There are predefined
functions written into the MySMS_ClientService that constantly run which are
utilized to make these queries. In the case where the developer application wishes to
send a query, the process will be to call the function inside the service and pass the
necessary information. The service will abstract the other necessary steps such as

encoding the message and placing the required headers onto the message before being
sent to the MySMS server.

One aspect of the implantation involves coordination between the client and server

– this aspect is the security portion of MySMS. Currently the implantation of security
in MySMS is limited, however the framework is set up to establish a security system
much akin to UNIX groups and users. The implementation on the server is based on
user names, user names are attached to groups which have specific permissions to
execute certain SQL queries, run certain DDFs, and subscribe and unsubscribe to
certain data elements. Additional security is being worked on and is considered part
of future work.

5 Evaluation

MySMS exists as a platform for developers to create applications easily and
quickly utilize SMS messages for the transport of SQL queries. Since that is
MySMS’s primary feature, it is most important to ensure the stability, reliability and
functionality of this feature. In addition to this primary feature there are a wide
spectrum of additional features which makes MySMS more viable, useful, and
essential in contrast to other toolkits. These features are decoding, encoding,
fragmented messages, notifications, subscriptions, developer defined functions and
security. All of these features need to be objectively evaluated for an objective and
effective understanding on the progress and potential of the MySMS project.

5.1 Feature Evaluations

The primary feature of sending and receiving SMS messages for the purposes of

SQL transactions have been tested a great deal. Current tests show little discrepancy
in the success of the feature. As long as the client can successfully send the SQL
query the server is capable of parsing that query and responding with the correct
ResultTable in the case of a smart phone, in the case that the phone does not have the
capabilities of a smart phone, the raw data is returned. Considering the limitations of
both smart and limited phones, this feature has been developed to mature stage with
no known bugs and high reliability. There is no indication that this feature is not
working, nor is there any indication that edge cases such as oversized messages or
broken queries would result in unexpected behavior from the MySMS server
modules.

The success rate which SQL queries are being handled by the MySMS server

would also suggest that the encoding and decoding are working successfully. Since
each message from a smart phone is first encoded at the client side, decoded and re-
encoded on the server side only to be decoded again at the client side when the
information is returned; any abnormalities in the encoding or decoding process would
cause the entire SQL query to fail. Such a failure would be immediately recognized
though the problem would not be immediately isolated. After considerable testing and

preparation, encoding and decoding work as expected, which in turn supports the
primary feature of MySMS.

Typically SQL queries can be lengthy and request a great deal of information. It is

not uncommon for an SQL query to return a ResultTable that is thousands of
characters in length. To resolve this issue MySMS deploys a system of fragmenting
messages so that large messages are broken down into smaller ones. Due to the
success rate of the SQL queries and the tests related to these queries it is safe to say
that the fragmentation and defragmentation is also working as expected. In the case
where it were not, large messages would be garbled, broken, or simply make no sense
at all once they were decoded.

The extended features of MySMS classified as notifications and subscriptions have

just been incorporated into the primary code of the package. Initial tests show
successful implementation though there are still pipeline questions regarding how the
properly inform the client application when there is a standing notification or
subscription awaiting in the case the application has been shut down. Although the
features are implemented the details have not entirely been worked out so there is
only limited success.

Another keystone feature that MySMS includes is the ability for developers to

insert their own functions into the MySMS pipeline. These functions can then be
executed on the server side before being returned to the client. Initial tests seem to
point toward a successful implementation of this feature though there has not been
any specific application built onto this feature. This means that even though it appears
to work, certain levels of stress on the server or other unknown factors may cause the
feature to break down. At this time there is no conclusive evidence supporting this so
it is considered a successful implementation.

5.2 Server Setup Times

One of the most important features, which MySMS provides, is the ease for
developers to utilize it. This means developers need to be able to quickly set MySMS
up and begin to use it right away. With this in consideration a great deal of time was
put into setup time of MySMS and to reduce unnecessary hassle. Overall installation
was quick and painless, simply downloading and deploying the modules necessary –
all are packaged together by MySMS, which takes roughly an hour to complete the
setup. Additional time is needed if the setup requires something beyond the default
setup, however this is dependant on what the developer wishes to do with MySMS.

In the case the developer wishes to do something more specific with MySMS,

typically the time needed depended on the difficulty of the task. In the case where the
developer wishes to simply use queries directly from client applications there is no
setup time because MySMS already expects that. In the case where the application
will send specific information which is encoded differently the developer needs to
take a small amount of time to write the decoder for the information sent. For simple
applications this can be anywhere from thirty minutes to an hour.

5.3 Example Evaluation Application

To demonstrate the feasibility of MySMS in deploying applications fast and
painlessly for developers, our evaluation required the creation of some sample
applications. A total of three sample applications were developed, the simplest serves
as a suitable example because it is a representation of the ease at which developers
can deploy applications on cell phones with only minor additions to the server
installation.

The simplest application based on the MySMS framework developed reported the
weather given a zip code. This was supported on both smart phones and non-smart
phones – limited to sending SMS messages via the keypad. The first benefit of
MySMS is apparent in that for both the smart phone and non-smart phone the user
only needs to text the zip code to the appropriate phone number for a response.

The removal of having the user input an SQL query directly as a text message
improves both usability but also the access which the application may be deployed.
Most users do not have an understanding of SQL queries, which means any
information they submit over SMS in the form of a query will not appear transparent
at all. However, when MySMS packages the information and transmits it in a format
that the user can understand but the server can then interpret, it dramatically increases
usability.

As a result of simplifying the message the user needs to send to the server the

developer must provide a decoder module as mentioned earlier. This code is relatively
painless and quick to write since the MySMS server side handles all of the
transmission once the appropriate queries have been sent. Consider the following
code:

public void InjectQuery(String str) {

Statement cmd =
con.createStatement(ResultSet.TYPE_FORWARD_ONLY,
ResultSet.CONCUR_UPDATABLE);
ResultSet rs = cmd.executeQuery("select * from
smssvr_in where 'process' = 0");
rs.close();
cmd.close();

}

The example weather application is based primarily on this function which

provides all of the decoding and server response. InjectQuery(String str) is called
when an SMS message is received by the server and the message received matches
the parameters set by the developer. The ease of development comes in that the
message is passed straight through as a string for simple manipulations and
processing. With this string the developer can create the appropriate SQL query, thus

hiding it from the user who sent the SMS message originally. As a result, the user will
only see a simple text request with a zip code.

Another example application based on existing work called QuickSurv[6] from the

University of Washington is based primarily on the medical test result reporting.
MySMS is perfect for situations where information needs to be reported back in a
timely fashion so treatment may be administered before serious health issues arise.
The benefit of using MySMS, aside from rapid development time, is the availability
of a GUI to simply the data collection process and the encoding which is done in the
background, meaning health workers do not have to manually type in the encoding on
a cell phone keypad, thus reducing the chance of a mistake.

Fig. 7. A graphical user interface for a QuickSurv application deployed on an Android smart
phone. The text field represents the only information which the user needs to input before
submitting the form.

Below is an example of the custom encoder used for the QuickSurv application.

The message is encoded into the specified QuickSurv format by the client application
and then when it is sent that message is encoded using our default QueryEncoder. In
this code the message is first decoded using the default QueryDecoder and it is then
split up so that the relevant information can be obtained. After the information is
taken from the string a SQL query is created and returned.

public String decode(ByteBuffer buffer) throws Exception
{
QueryDecoder sqc = new SimpleQueryCoder();
String encodedString = sqc.decode(buffer);

String[] temp = encodedString.split("#");
int questionaire_code = Integer.parseInt(temp[0]);
int site_code = Integer.parseInt(temp[1]);

temp = temp[2].split("*");
String date = temp[0];
int adults = Integer.parseInt(temp[1]);
int children = Integer.parseInt(temp[3]);
int adults_positive = Integer.parseInt(temp[4]);
int children_positive = Integer.parseInt(temp[6]);

String query = "INSERT INTO InputData
(Questionaire_Code, Site_Code, Date, NumberAdults,
NumberChildren,

NumberAdultsPositive, NumberChildrenPositive,
StocksOut, VTCOpen) VALUES ('" + questionaire_code +
"', '" + site_code + "',

'" + date + "', '" + adults + "', '" + children + "',
'" + adults_positive + "', '" + children_positive +
"');";

return query;

}

5.4 Limitations and Obstacles

Although the overall progress of the project was smooth, there are a few
discrepancies between what was the original intended behavior and the current
behavior. The most significant discrepancy is found in the Android Platform on the
client side. The best case scenario would be for the MySMS service to return a
ResultTable to the querying application; the Android Platform has a documented issue
that prevents the return of custom defined classes in conjunction with other custom
classes. This means, the platform itself is incapable of carrying out the expected
behavior, so it is not possible for MySMS to rectify this problem given the current
Android SDK. The solution to this problem has been to return a String, a common
non-custom class, to preserve the information requested.

A final note should be made on the limitations of the server due to network carrier

constraints. During testing we found that the MySMS server was limited to sending
one message per ten seconds. This issue was tracked and traced to carrier limitations.
It seems that standard SMS messages are restricted to a single message every ten

seconds. In this case if the server were to become overburdened by multiple messages
it would significantly increase the delay between requests and responses. Although
this is a serious issue for busy servers it can be solved by either working with the
network carrier to remove the limit or increasing the throughput with a GSM modem
or multiple phones.

In the case that the transmit limitation is removed MySMS has considerable
throughput for handling queries since the time for message processing is nearly
negligble. Most of the time taken to respond to a query is due to the limitation of
sending SMS messages, without this limitation the throughput is restricted to the rate
at which the inbox table is checked. Typically this number can be modified, but the
default is around five seconds, thus every five seconds all messages in the inbox are
gathered and processed. This allows for a throughput of thousands of messages every
minute, the only restriction is limited to the processing power of the server itself.

6 Societal Implications

The introduction of MySMS to the global community is not dramatic such as the
introduction of the steam engine or the internal combustion engine. Unlike a new
technology which serves to simplify daily tasks, MySMS acts as an enabling
technology which serves to improve the abilities of people to perform tasks which
they were previously unable or faced significant obstacles to complete. Furthermore
the effects of MySMS on the global community are limited to the willingness of
developers to embrace this new framework.

The reasoning for this argument is the numerous projects which MySMS borrows

and shares features with. These projects are mentioned above in related works and
they serve both as solvency to prove that MySMS is a deployable and useful
framework, while also demonstrating the slow and limited adaptation for developers
to use SMS and cell phone technology. Although there have been numerous
deployment of SMS and cell phone technology in these projects – all which serve
some greater goal in bringing or sharing information, the adoption of these projects
have been typically limited.

With these arguments in consideration it is not within reason to argue that the

implications of MySMS are only limited to the applications which will be deployed
with the framework. These applications can range anywhere between a simple
weather reporting service to a complicated financial transport tool for those who need
to make transactions without a computer. Depending on these applications the
implications of MySMS could be enormous – especially given its early developmental
stages.

 The claim for the enormous implications of MySMS also is a result of the

pioneering work done by MySMS in exploring the expanding features, which may be
applied to SMS and cell phone technology. These features are unexplored and

although may be considered safe they could open up entirely new security
implications. Furthermore, like most pioneering work, following works may build
upon MySMS, and if there is some considerable or unforeseen consequences, it may
cause serious developmental problems in the future. Although the MySMS group has
spend a great deal of time considering these issues, there is still the possibility for
such an event.

7 Future Work

Currently there are limitations of scale related to MySMS. In the case where there
are either too many applications, too many messages, or anything beyond the
expected abilities of the server service will crawl to a stop. In addition there are still a
great deal of other features which can be implemented to further the abilities of
MySMS and make it a far more viable choice as a platform to develop cell phone
based SMS applications.

Possible points of exploration for scaling can be considered by a closer inspection

of the SMS Server Tools 3. This particular project managed to connect multiple
devices up to a single computer. This means in the case where the smart phone the
server is connected to cannot receive messages any faster multiple phone numbers
could be employed. There is also potential for multiple applications and databases to
be hosted on the same computer to make greater use of MySMS’s capabilities.

Additional features that may be explored are simplifications to the SQL protocol so

that the server can encode and decode shorter keywords for SQL queries. In addition,
MySMS could implement a greater percentage of the SQL keywords. Currently only
essential keywords are implemented, which means developers are limited to a subset
of all the options which are available to them.

One prime feature that has the framework laid out but not the actual

implementation is a greater level of security and encryption. Currently the
implementation supports a system of encryption and security but it is not
implemented. Expanding security features such as adding passwords, handshaking
authentication, and phone number verification will ensure greater stability in MySMS
and provide for a safer operating environment. In addition, encryption needs to be
expanded so that messages can be securely protected against third parties and
developers can pursue applications that carry sensitive information.

Another area of approach would be to expand MySMS to something beyond SQL

database access. SMS messages can be used to retrieve many text-based sources of
information such as e-mail, WebPages, and papers, and other text based information
mediums. All of these mediums could be condensed down and eventually served by
MySMS using the same protocols and server, except with a different method of
accessing this information.

One important aspect of future work - which should be considered, is the increasing
need to make SMS messages more efficient so that more information can be sent at
once. One method of doing so is to introduce a form of smart encoding, which would
shorten, and the overall message. This would allow for additional information to be
sent over a single SMS message. An additional benefit to this line of development
would be the increasing simplicity for non-smart phones to send queries. Often SQL
queries can be very long and complicated, if a system of keywords were developed it
would make queries much shorter.

8 Conclusion

At the beginning of this project, the MySMS team recognized both the potential of
cellular phone networks; data transmission via SMS, and the essential role a database
plays in the prorogation of data. The hopes of creating a framework for developers so
that they may easily tap into this potential are realized in MySMS. Although the
project itself is still in its initial stages, there has been great progress and a great deal
of development already with many of the primary features and expectations met.

Although there are many other cellular phone SMS toolkits in existence, MySMS

works to extend those abilities and bring new functionality to developers to further the
rate of development for innovation and the prospering of ideas. Continual work on
MySMS will reap greater benefits as more potential is explored and harvested
bringing new advantages to developers who use not only MySMS but the idea
MySMS is based on. This idea is simple, information empowers people, helps them
grow, and brings out even greater potential; people should not have to wait for
computers and fiber optic networks, that can be realized now with an innovative
system of information collection and sharing utilizing a cell phone’s SMS network.

Acknowledgements
The MySMS team would like to acknowledge our instructors and guidance

advisors who kept us on track and made helpful suggestions to prevent the group from
wandering too far. We would also like to thank SMSLib for releasing such a useful
toolkit which we were able to build our server portion upon. Finally, we are very
thankful for the many participants of Google Groups Android Development, their
help assisted us many times to answer questions which seemed to have no answer and
no solution.

References

1. "FrontlineSMS." FrontlineSMS. kiwanja.net. 28 May 2008
<http://www.frontlinesms.com/>.

2. Kasvi, Keijo. "SMS Server Tools 3." SMS Server Tools 3. 11 May 2008. SMS
Server Tools 3. 28 May 2008 <http://smstools3.kekekasvi.com/>.

3. Kovalenko, Anton. "SMS Reception Center." SMS Reception Center. 08
Feburary 2008. Sw4me. 28 May 2008
<http://sw4me.com/wiki/SMSReceptionCenter?v=vsd>.

4. "MSR India SMS Toolkit." MSR India SMS Toolkit. 2008. Microsoft. 28 May
2008 <http://www.codeplex.com/smstoolkit>.

6. Lesh, Neal. QuickSurv. Personal Contact. <neal@equalarea.com>.
7. Pacqué, Michel. "Malaria: Prompt Treatment Saves Lives." Maximizing Access

and Quality (MAQ) Initiative. 09 August 2005. USAID. 11 Jun 2008
<http://www.maqweb.org/techbriefs/tb19maltreat.shtml>.

8. Reardon , Marguerite. " Emerging markets fuel cell phone growth." CNet
News. 14 February 2007. CNET. 28 May 2008
<http://news.cnet.com/Emerging-markets-fuel-cell-phone-growth/2100-1039_3-
6159491.html>.

9. "SMSLib." SMSLib. 18 May 2008. SMSLib. 28 May 2008 <http://smslib.org/>.
10. Tseng, Chwan-Lu, Joe-Air Jiang, Ren-Guey Lee, Fu-Ming Lu, Cheng-Shiou

Ouyang, Yih-Shaing Chen and Chih-Hsiang Chang. "Feasibility Study on
Application of GSM-SMS Technology to Field Data Acquisition." Computers
and Electronics in Agriculture 53.1 (August 2006): 45-59.

11. "User Manual." GSM-CONTROL SMS Gateway Software. September 2007.
KLINKMANN AUTOMATION. 28 May 2008 <www.klinkmann.com>.

12. Veeraraghavan, Rajesh. "Warana Unwired." Warana Unwired. Microsoft
Research. 11 Jun 2008 <http://research.microsoft.com/~rajeshv/warana.htm>.

